Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(3): 5722-5730, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459725

RESUMO

Base catalyst and oxidant are usually necessary to promote the polymerization of poly(disulfide) oligomers through oxidative coupling of the terminal SH groups into S-S bonds. In this study, we prove that self-polymerization of bifunctional (disulfide) oligomer films can take place in a matter of minutes under UVC irradiation (254 nm, 10.5 mW cm-2). The resulting insoluble polymer is characterized using solid-state NMR, 1H T2 NMR relaxation measurements, thermal analysis, and Fourier-transform infrared spectroscopy and proves to have similar composition as a model poly(disulfide) prepared under oxidative conditions, but distinct physical properties. These differences are explained by a change in polymer architecture due to a higher ratio of cyclization relative to linear polymerization. Homolytic photocleavage of internal S-S bonds creates thiyl groups close to each other, driving an increased kinetic feasibility for the cyclization reaction by radical coupling. The subsequent formation of mechanically interlocked macrocycles (polycatenane network) is proposed to account for film properties analogous to those of a cross-linked polymer.

2.
Macromol Rapid Commun ; 37(2): 155-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26502361

RESUMO

Initially developed as an elastomer with an excellent record of barrier and chemical resistance properties, poly(disulfide) has experienced a revival linked to the dynamic nature of the S-S covalent bond. A novel photobase-catalyzed oxidative polymerization of multifunctional thiols to poly(disulfide) network is reported. Based solely on air oxidation, the single-step process is triggered by the photodecarboxylation of a xanthone acetic acid liberating a strong bicyclic guanidine base. Starting with a 1 µm thick film based on trithiol poly(ethylene oxide) oligomer, the UV-mediated oxidation of thiols to disulfides occurs in a matter of minutes both selectively, i.e., without overoxidation, and quantitatively as assessed by a range of spectroscopic techniques. Thiolate formation and film thickness determine the reaction rates and yield. Spatial control of the photopolymerization serves to generate robust micropatterns, while the reductive cleavage of S-S bridges allows the recycling of 40% of the initial thiol groups.


Assuntos
Dissulfetos/química , Guanidinas/química , Polietilenoglicóis/química , Compostos de Sulfidrila/química , Xantonas/química , Catálise , Luz , Espectroscopia de Ressonância Magnética , Acoplamento Oxidativo , Processos Fotoquímicos , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...